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In a nutshell

Problem:
•The estimation of the Ensemble Average
Propagator (EAP) and its related features such
as the Return-To-the-Origin Probability (RTOP)
measure requires a huge amount of densely
sampled multiple-shell q-space data.

Solution:
•We analytically derive an alternative approach to
retrieve the RTOP directly from a single-shell
q-space data.

•We provide a closed-form solution to correct
noise-induced bias using a non-stationary
log-Rician statistics.

Figure 1: The RTOP estimation procedure.

Ensemble Average Propagator

Under the narrow pulse assumption, the EAP in real
space, P (R), is related to the diffusion signal atten-
uation E(q) in the q-space domain by means of the
Fourier transform

P (R) =
∫
R3
E(q) exp(−2πjqTR)dq,

•S(q) is the diffusion signal acquired at position q,
•S0 is the baseline measured without a diffusion
sensitization,

• q is the wave vector related to b = 4π2τ‖q‖2 with τ
being the effective diffusion time.

Return-To-the-Origin Probability

The probability in the origin indicates the EAP feature
that the molecules minimally diffuse within the diffusion
time and it is referred to as the RTOP measure

RTOP =
∫
R3
E(q)dq.

Considering a more general model beyond the diffusion
tensor, i.e. E(q) = exp(−bD(q)), and assuming that
the diffusion does not depend on the radial coordinate
we can define the RTOP integral in a spherical system

RTOP =
√
π

4(4π2τ )3/2

∫ 2π

0

∫ π

0
(D(θ, φ))−3/2 sin θ dθ dφ,

•D(θ, φ) is the apparent diffusion coefficient.

Numerical integration

In order to numerically evaluate the RTOP integral, one
can use a direct approach assuming that the element of
the surface, ∆S, is inversely proportional to the number
of gradients (i.e. ∆S ∝ 1/Ng)

RTOP(1)(x) = Cτ
1
Ng

Ng∑
i=1

(
− 1
b

logE(qi)
)−3/2

= Cτb
3/2
〈

(− logE(qi))−3/2
〉
,

•Cτ = 8−1(πτ )−3/2 is a time-related constant.

Considering the second-order Taylor expansion of the
expectation operator E {f (X)} given f (X) = X−3/2

we obtain the approximation

E
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}
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,

and finally redefine direct RTOP(1) formulation using
a sample mean estimator E {Xp} = 〈(− logE(qi))p〉

RTOP(2)(x) = 15
8
Cτb

3/2

〈
(logE(qi))2

〉
〈− logE(qi)〉7/2

− 7
8
Cτb

3/2 〈− logE(qi)〉−3/2 .

New solution

Non-stationary log-Rician bias

Let us presume that the random variable log Si(x) fol-
lows a non-stationary log-Rician distribution with the
underlying parameters Ai(x) and σi(x).

Assuming the random variables log Si(x) and log S0(x)
are independent we state that

E
{(

log Si(x)
S0(x)

)2}
= E

{
(log Si(x))2}

+E
{

(log S0(x))2}− 2E {log Si(x)}E {log S0(x)} .

Given the asymptotic expansion of the expectation
E {(log Si(x))2} we revise the the RTOP(2) formulation
to handle the non-stationary log-Rician statistics

RTOP(2)(x) = 15
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3/2
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〉
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− 7
8
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with B(x) being the bias correction factor
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New solution

Experimental results

HCP WuMinn 599671 (b = 1000, 2000, 3000 s/mm2)

Figure 2: (a) The RTOP measure obtained using the p% samples (left) and the absolute error of the measures with reference to the
fully-sampled data. (1) The genu of the corpus callosum (CC), (2) the anterior thalamic radiation and (3) the splenium of the CC.
(b) Absolute components of the bias B(x) for Ng = 27. (c) The mean relative error and the standard deviation of the RTOP measure.

HCP MGH 1016
(b = 1000, 3000, 5000, 10000 s/mm2)

Figure 3: The RTOP measure for maximal b-values.

Table 1: The correlation coefficient between the RTOP measures
estimated under different maximal b-values (top) and under different
techniques for same maximal b-value (bottom).

3k/5k s/mm2 3k/10k s/mm2 5k/10k s/mm2

MAP-MRI 0.900 0.859 0.942
MAPL 0.876 0.760 0.853
Direct 0.597 0.548 0.639
Refined 0.929 0.850 0.945

3k s/mm2 5k s/mm2 10k s/mm2

Refined/MAP-MRI 0.902 0.926 0.889
Refined/MAPL 0.897 0.904 0.941
MAP-MRI/MAPL 0.776 0.842 0.809
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