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The reconstruction process in multiple coil MRI scanners makes the noise features in the
final magnitude image become non-stationary, i.e. the variance of noise becomes position-
dependent. Therefore, most noise estimators proposed in the literature cannot be used in
multiple-coil acquisitions. This effect is augmented when parallel imaging methods, such as
GRAPPA, are used to increase the acquisition rate. We propose a new technique that allows
the estimation of the spatially variant maps of noise from the GRAPPA reconstructed signal
when only one single image is available and no additional information is provided. Other
estimators in the literature need extra information that is not always available, which has
supposed an important limitation in the usage of noise models for GRAPPA. The proposed
approach uses a homomorphic separation of the spatially variant noise in two terms: a sta-
tionary noise term and one low frequency signal that correspond to the x-dependent variance
of noise. The non-stationary variance of noise is estimated by a low pass filtering. The noise
term is obtained via prior wavelet decomposition. Results in real and synthetic experiments
evidence the suitability of the simplification used and the good performance of the proposed
methodology.

Simplified noise model in GRAPPA
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GRAPPA reconstructs the full k-space from a sub–sampled k-space acquisition.
The reconstructed lines are estimated through a linear combination of the existing
samples. The composite magnitude signal (CMS) after sum-of-squares (SoS) can
be approximated by a non-stationary nc-χ distribution with a (reduced) effective
number of coils Leff and an (increased) effective variance of noise σ2

eff [Aja10]:

Leff(x) =
|AR|2 tr(CX)+(tr(CX))2

A∗RCXAR + ||CX ||2F
; (1)

σ
2
eff(x) =

tr(CX)

Leff
. (2)

If high SNR is assumed, AR
l (x) >> σR

l (x), then the SoS can be approximated as:

ML(x)≈ AT (x)+NR(x;0,σ2
T (x)), (3)

where A2
T (x) = A∗RAR and NR(x;0,σ2

T (x)) is a non-stationary Gaussian noise with
zero mean and variance:

σ
2
T (x) = |Ω |2A∗RCXAR

A∗RAR
= |Ω |2A∗S W∗WΣW∗WAS

A∗S W∗WAS
. (4)

Matrix AS = [AS
1 , · · · ,AS

L ]T is the original sampled signal (without noise), and AR =
W ·AS . The variance of noise depends on the position, the GRAPPA reconstruction
coefficients, the original covariance matrix and the noise-free signals.
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Figure: Ratio of experiments in which the Gaussian distribution hypothesis is
accepted, using a Pearson goodness-of-fit test. Left: ρ = 0.1. Right: L = 8.

Homomorphic noise estimation

Homorphic estimation of non-stationary noise is originally proposed in [Aja15]. A
non-stationary Gaussian noise N(x;0,σ2(x)) can be seen as

N(x;0,σ2(x)) = σ(x) ·N(x;0,1)

log |N(x;0,σ2(x))| = logσ(x)︸ ︷︷ ︸
low frequency

+ log |N(x)|︸ ︷︷ ︸
higher frequency
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Figure: Pipeline of σ(x) estimation assuming Gaussian noise. I(x) is the original
image, E{.} is the local expected value of the signal and |.| is the absolute value.

Acknowledgements
This work was partially supported by the Ministerio de Ciencia e Innovación under Research Grant
TEC2013-44194-P and Junta de Castilla y León under grant VA026U14. The second author acknowl-
edges Consejerı́a de Educación, Juventud y Deporte of Comunidad de Madrid and the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) for REA
grant agreement n. 291820.

Blind Noise estimation for GRAPPA
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Simplified non-stationary Gaussian model:

ML(x) = AT (x)+σT (x) ·N(x;0,1)

To remove the contribution of the signal AT (x), we will use the stationary wavelet
transform (SWT):

I(1,HH)(x)≈ σT (x) ·N(x;0,1).

with I(1,HH)(x) the high-high subband coefficients of the SWT of the image ML(x) at
the scale s = 1. After homomorphic processing:

σ̂T (x) =
√

2eLPF{log |I(1,HH)(x)|}+γ/2. (5)

Results

Synthetic experiment: from Brainweb, 8-coil systems where simulated using a re-
alistic sensitivity map, with the image in range [0-255]. Each coil is corrupted with
Gaussian noise with variance σ2 = 100 and correlation between coils ρ = 0.1. The
k–space is uniformly subsampled by a factor of 2, keeping 32 ACS lines and recon-
structed using GRAPPA and SoS. 100 repetitions of the experiment are considered.
The Daubechies (db7) wavelet is used. A Pearson goodness-of-fit test is carried out
for the Gaussian assumption: in the 91.85% of the area of interest the null hypoth-
esis is accepted.

Figure: Estimation of σT (x) (synthetic). a) Std. of 100 samples; b) Theoretical
value; c) Homomorphic (1 sample); d) Goossens (1 sample).

Real data: 100 repetitions of phantom, 8-channel GE Signa 1.5T EXCITE 12m4
scanner with FGRE Pulse Sequence. Matrix size 128×128, TR/TE 8.6/3.38 ms,
FOV 21×21cm, slice thickness 1mm. All the 100 samples are 2× subsampled, then
GRAPPA reconstructed using 16 ACS lines (same coefficients for the 100 slices).
For the 94.02% of points inside the signal area the null hypothesis (Gaussianity) is
accepted, 91.1% if the whole image is considered.

Figure: Slice of an 8-coil acquisition of a doped ball phantom.

Figure: Noise estimation over the phantom. a) Standard deviation of 100 samples;
b) Homomorphic estimation of one sample; c) Estimation using Goossens’ method.
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Figure: Capability to estimate the variance of noise with one single image:
Ratio of pixels whose variance estimates calculated with one image lay within the
95% confidence interval of the non-stationary variance of noise for an increasing
number of acquisitions. The proposed method provides with just one acquisition
similar results to the ones obtained with a higher number of acquisitions.
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